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Abstract

Frictionless sliding conditions between two bodies are usually defined using either the method of Lagrangian
multipliers or by prescribing an artificial (penalty) stiffness which resists the penetration at the contact point. Both of
these methods impose the condition that the contact force should be normal to the contact surface, with the Lagrangian
multiplier or the penalty parameter serving as a measure of this force. In this work, an alternative approach is
undertaken: the frictionless sliding condition is defined through a relationship between nodal parameters of the virtual
displacements of a discretised principle of virtual work. This method, which does not involve additional force
parameters or degrees of freedom, is known as the master—slave or the minimum-set method and is particularly con-
venient for displacement-based finite-element implementation. The method is analysed in detail in context of bilateral
sliding constraints characteristic of prismatic and cylindrical joints in flexible beam assemblies undergoing large overall
motion. Two numerical examples are presented and assessed against the results in the literature.
© 2004 Elsevier Ltd. All rights reserved.
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1. Motivation and introduction

The present work is motivated by the authors’ desire to model translational joints (prismatic and
cylindrical) in various types of flexible mechanisms using the master—slave approach (Crisfield, 1997,
Crisfield and Jeleni¢, 1998; Crisfield and Jeleni¢, 2000; Ibrahimbegovi¢ and Mamouri, 2000; Jeleni¢ and
Crisfield, 1996, 2001; Mitsugi, 1997; Munoz et al., 2003) in a kinematically rigorous way. As given in these
references, the method only relates the original nodal degrees of freedom (the slave degrees of freedom) of a
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finite element to an extended set of degrees of freedom, which are again specific to that node. This extended
set includes the released degrees of freedom defined by the joint which is being modelled and the global,
master, degrees of freedom, which are shared by all the other elements which join at that node. For joints
which cannot be defined with respect to a single material point, such an approach is only kinematically
approximate.

By considering, for example, a prismatic joint, which is initially at the position of a node in the middle of
the horizontal beam shown in Fig. 1a, this procedure will invariably result in the direction of the released
degree of freedom in a deformed state being defined by the tangent to the beam at that node. This, as can be
seen from Fig. 1b and c, is clearly a kinematically inconsistent result. This anomaly has already drawn
certain amount of attention in the literature (Bauchau, 2000; Bauchau and Bottasso, 2001), where it has
been rectified by a proper definition of the sliding contact condition using the method of Lagrangian
multipliers. The authors named such a joint (Fig. 2) the sliding joint, and in this paper we will adopt this
terminology to describe what we earlier referred to as the “kinematically rigorous translational joint™.
More on the method of Lagrangian multipliers as applied to the problems of multi-body dynamics may also
be found in Garcia de Jalén and Bayo (1994), Géradin and Cardona (2001) and von Schwerin (1999),
among many other sources.

Here, we attempt to formulate the sliding joint without resorting to Lagrangian multipliers or the
penalty method. This choice is motivated by the presence of standard complexities associated with these
techniques. In particular, using the Lagrangian multipliers creates an additional degree of freedom (the
multiplier) for each constraint—these are the force degrees of freedom and, as such, give rise to the
problems of well-posedness of the system of equations with mixed unknowns. Furthermore, the matrix of
coefficients of the mixed system is not positive definite even in a stable region, which makes the occur-
rence of divergence-type instabilities less obvious. In dynamic problems, we are also left to deal with the
coupled system of differential and algebraic equations, which require specially designed solution proce-
dures. On the other hand, when the constraint condition is enforced through a penalty function there
cannot exist the problems given above since the parameter is not an unknown, but this method leads to a
new problem: the penalty method is inherently approximate, with its accuracy directly related to the
magnitude of the chosen penalty parameter. By modifying this parameter the accuracy can be improved,
but this is done at the expense of incurring the numerical problems due to the increased ill-conditioning

Initial configuration Deformed configuration 1 Deformed configuration 2
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Fig. 1. Prismatic joint.
Initial configuration Deformed configuration 1 Deformed configuration 2

Fig. 2. Sliding joint.
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of the system. The so-called augmented Lagrange method (e.g. Géradin and Cardona, 2001) combines the
advantages of the two approaches in order to remove the approximate character of the penalty method,
while retaining its advantage of providing a positive definite Hessian at a stable equilibrium for a suitably
chosen penalty parameter. In a similar vein, another constant scaling may be introduced to eliminate the
problem of different orders of magnitude for the unknown degrees of freedom. The augmented
Lagrangian method thus eliminates most of the above problems at the expense of having to deal with the
choice of two sets of problem-dependent constant parameters. The Lagrangian multipliers, however,
always remain the global degrees of freedom to be added to the original set of the kinematic degrees of
freedom.

The master—slave method deals with the minimum set of the kinematic degrees of freedom and in this
sense cannot suffer from the difficulties mentioned above. The purpose of this paper is to retain this
principal feature of the method, and at the same time generalise its node-based concepts to allow the
modelling of sliding joints along a deformable surface. A very related approach has recently been under-
taken (Marjamaki and Makinen, 2003) in order to analyse the sliding of a spring along a deformable planar
beam.

Although our principal motivation is to obtain a realistic model of the sliding joints in 3D beams, in
Section 2 the theory will first be derived by considering a genuine point-on-surface contact between 3D
continua. It should be noted, however, that here we do not address the implications of the method to
contact mechanics, although we believe that such implications exist. In particular, throughout the paper we
limit our attention to bilateral contacts only, i.e. we do not address the issues of contact detection and we
assume the contact force to be of either direction. In Section 3, we apply the theory to the problem of
sliding joints in 3D beams, where the justification for the assumption of bilateral contact becomes obvious.
Section 4 presents two relevant numerical examples.

2. Point-on-surface sliding contact in 3D elastodynamics

We consider a simple system of two elastic bodies which are in contact with one another through a single
point. The kinematics of the contact is analysed first in order to establish its implications on the nature of
the virtual displacements leading to the governing equations of motion. A suitable finite-element discret-
isation is performed next, which takes account of this contact condition, eventually leading to a system of
equations with the minimum number of degrees of freedom.

The two bodies are denoted as #* and #” and are represented by a smooth and invertible mapping into
the ambient space ¢ : ' — R?,] = A, B as shown in Fig. 3. Let the surfaces of the bodies %" and 0%” be
Lipshitz-continuous and consist of two parts each: the parts &* and &? with prescribed kinematics and the
parts g}f and (g’ﬁ with a prescribed surface traction such that

N6 =0 and & UE =04 1=4,B.

The distinction between the mappings that take place at different times will be made by defining the
mapping ¢, : R' x R, — R’. At time ¢, 4/, &} and & are mapped into ¢,(#') C R’, ¢,(&,) C R* and
qﬁt(é";) C R?, where ¢, () is a shorthand notation for ¢ (e, 7). Also, for a given material particle P € 4, let us
also define the mapping y : # — R*, and the reference and deformed position vectors at time ¢ as Xp = y(P)
and xp = ¢,(P), respectively.

In the deformed configuration, the contact between %' and % is established at some material points 4,
and By, i.e.

X4, = XBy,

as also shown in Fig. 3.
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Fig. 3. Mappings between the reference configuration and the deformed configuration.

The present formulation is based on the following hypotheses:

H1 The material point 4; on body #* remains in contact with body #” throughout the motion, whereas
material point B; does not have to stay in contact with %7, i.e. point 4, slides over the surface of %°.
H2 At time ¢, body #* exerts a force on point B; of body #” denoted Sg,, which is taken to be equal in
magnitude and opposite in the direction of the force S,,, exerted on point 4, of body %#* by body %”,
ie.
SAI == _SBl .

This assumption is motivated by Newton’s third law, valid for the contact forces between mass particles.
H3 Only frictionless contact is considered, which implies that the interaction forces between the bodies
point in the negative directions of the normals n,, and np, to the surfaces 0" and 0%, i.e.

SAI = _”SA] ||”A1 and SBI = —”SBl HnB"

Note that the normals are uniquely defined since the surfaces are Lipschitz-continuous.
2.1. Cauchy’s equation of motion and its weak form

The (local) Cauchy’s equation of motion is defined in the deformed configuration as (Marsden and
Hughes, 1994):

dive +b = px (1)

on ¢,(%* U #°), where ¢ is the Cauchy (true) stress tensor, dive = 6V,, b is a distributed loading per unit

volume, p is the current density of the material and here and throughout the paper (¢) and (é) indicate

material first and second time differentiation. This equation has to be complemented with the natural
boundary conditions

on—s=0 on ¢(&508))\ (4 UB), (2)
Q/limo 6dSn+S, =0 atl,, [=A4,B, (3)
gy

,Q/]l
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where n is the outward normal to surface ¢,(& f]) and s is a distributed loading per unit area of this surface,
while .7, C ¢,(&;) and .o/ C $,(&;) denote the surface areas in the neighbourhoods of 4, and B

respectively at time ¢. Furthermore, the essential boundary condition reads
x=x on ¢,(&) I=4,B, (4)

where X is a prescribed displacement field. The weak form of Cauchy’s equation of motion (the virtual
work) is obtained by taking the dot product of Egs. (1)—(3) with the admissible variations éx of the de-
formed configuration (which are therefore required to vanish on ¢,(&") thus satisfying Eq. (4)). Note that
by defining a displacement of a material point as p = x, — x,, the admissible variation dx of the deformed
configuration may be substituted by the virtual displacement dp. By integrating the dot product of Egs. (1)—
(3) with 3p over the domain ¢,(%#") U ¢,(%°), we obtain the following weak form,

G(x,8p) = Z / op - (dive +b — pX)dV — / op - (6n —s)dS
Qbf(*%ﬂ) d’r(é“,lg\ll)

1=A,B

—dp,, < lim / o-dSnJrS]]>
4’/1]—‘0 !

Introducing the identity dp - dive = div(edp) — grad dp : 6, where grad dx = V,dx, a colon indicates a
double tensor contraction, and applying the divergence theorem via f dlv(GSp )dv = fa 0 617 ondS
and noting f 4.6 6p ondS = 0,1 = A, B due to the kinematic adm1s51b111ty of dp, the prev1ous equation
turns into

Gx,3p) = 3 {/ | [V,,Sx o+ 3p- (px—b)}dr/—/ op -sdS + dp,, -s,l} —0, (5)
=18 | Jé(#) PACH)

where we have changed the sign for convenience. In order to express the weak form in (5) as integrals over
the reference domains, we introduce first the Piola transform of ¢ via ¢ =J 'PFT with J = detF,
F = GRADx = Vxx and P the first Piola—Kirchhoff stress tensor (Marsden and Hughes, 1994). By
inserting this transformation, evaluating the tensor contraction via A : B = tr(AB") and using the identity
(V,0p)F = Vxdp, the first term in (5) transforms into

=0.

V,,Sx:adV:/tr[(VXSp)PT]dVO:/VXBp:PdVO, (6)
¢,(#) i B

where V; is the volume of 4 in the reference configuration. By making use of the conservation of mass
pdV = p,dV,, where p, is the density in the reference configuration, Nanson’s formula ndS = JF~ " nydS,
(Ogden, 1984) and introducing Eq. (6), we finally obtain the following expression for the weak form:

Glx,8p)= Y {L [Vxdp P+ 5p- (poi — o) | d¥ —/ﬂ 8p - s0dSo + op, -s,l} -0, (7)

I=A.B

with by and s, being the distributed loads per units of reference volume and area, respectively.

2.2. Infinitesimal kinematic conditions and master—slave approach

We will now deduce a relation between the virtual displacements dp,, and dp;, at the contact points. Let
us perturb the deformed configuration in Fig. 3 with an infinitesimal variation represented by the vector
field edp, where € is an arbitrarily small scalar.
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Following assumption H1 introduced at the beginning of the section, contact point 4, at body #* in
such a perturbed state remains in contact with body %, but this point is now in contact with a point B, at
body %%, which is in general different from the contact point B, in the unperturbed deformed state. Fig. 4
shows this situation where the perturbed configuration has been denoted by ¢,.. According to this figure,
the positions of the new contact points are given by:

Xe (XBz) = x(XBz) + eap(XBz) = x(XBl + EST) + ESP(XBI + €8T)’
xG(XAl) = x(XAl) + EBP(XAl)’

where €8T is the difference in the reference configuration of the position vectors of X, and X, (see Fig. 5),
ie.

(8)

X5, = Xj, + €dT.
The contact condition at the perturbed deformed state is, of course,
x(Xz,) = x.(X4,)-
Substituting (8) into this result, computing its derivative with respect to € and setting ¢ = 0 gives

d d

BP(XA]) = & e:0x€<XAl) = &

with F|, = Vxx|; = GRADx|; being the deformation gradient at By and the tangent to the deformed
surface at B, dtp, = F| 5 0T, the push-forward of the material tangent vector 8T at point B,. By para-

x(Xp,) = F|5 0T + 6p(Xp,) = Otz + p(Xs,), 9)

e=0

Fig. 5. Contact points on body Z°.
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metrising the boundary surface 0%” using the coordinate chart Y = {¥', ¥?}, this vector can be expressed
as

0X 0X
_4d 1 1 y2 2 _ O 1, 9& 2 _
8T = - SZOX(Y + Y Y+ dY?) = o BISY + 3y2 318Y Fylp 8Y
with 8Y = {8Y',8Y?} and Fy = VyX. This allows us to write dtg, as
BtBl - FB] 6Y,

where Fy, = F|,; Fy|, .
Replacing 6p,, = dp(X,,) in (7) with the expression in the right-hand side of Eq. (9), and recalling
hypothesis H2 we obtain

Gx,8p) = 3 {/ [vxﬁpzp+5p- (poi—bo)}dlfo—/ Bp-sodSo} — 8ts, - Sg, =0,
2 7

1=A4,B

which, due to hypothesis H3 (S, is normal to surface 04” at point B; and 3tg, - nz, = 0), gives rise to the
standard (and anticipated) result

Gix,op)= 3 {//} [Vxdp: P+ 5p- (po% — o) | —[ Bp-sodSo} ~0. (10)

1=A4,B

The resulting weak form is therefore the same as the one obtained by considering the two bodies separately
and without taking into account the sliding condition. This condition, however, remains implicit in the
definition of the virtual displacement dp at the contact point.

2.3. Finite element interpolation of the test functions

Let us spatially discretise the problem by choosing N’ nodal points on body %' and approximating the
virtual displacements 8p by means of the Lagrangian polynomials I/(X) via

Sp(X)=8p"(X) = F(X)dp, j=1,...,N', (11)

where summation over repeated indices is implied and the interpolation functions I/(X) satisfy the standard
completeness conditions

N N
rXy) =0, > FX)=1 Y I(X)=0,
j=1 J=1
with &) being the Kronecker symbol.

In the beginning of this section it was assumed that the contact point 4, on #* was permanently in
contact with body #°. Throughout this section we will consider the case in which each body is represented
by a single finite element, denoted as 4 and B and having N, and N nodes respectively. In this way, we will
consider first the case where the sliding segment is fully contained within a single element, and only later
analyse the modifications needed in order to include sliding along a set of finite elements.

In order to alleviate the notation in the subsequent sections, we will also assume that the contact node on
element A4 corresponds to node number N, (the last node according to the local numbering of nodes in the
element).

Keeping these assumptions in mind, and noting the identity

(Vxdp") : P = tr[(3p, ® VxI')P'] = tr[(3p,) ® (PVxI’)] = dp, - PVI'(X),
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the weak form in (10) can now be written in the following approximated form
G'(x,5p") = dp; - g"/ + op} - g7 =0, (12)

where g’/ = q;’ +q — q'/ is the standard dynamic residual with

q’ = / PVI/(X)ds,
4

q = /IIJ(X)poidVo,

qi’j:/ IJ(X)bodV()—F/ Ij(X)S()dSO
A &l

as the standard nodal vectors of internal, inertial and external forces at node j of body I, respectively.
The interpolated form of relationship (9) follows from (11) as

Spyy, = dts, + I, 3p?, (13)

where Iél = I'(Xp,) and dpy, = dp(Xy,). Eq. (13) provides the necessary sliding condition to develop the
finite-element formulation using the master—slave approach.

In order to put the problem into the required context, we will call the vector SpN the virtual slave
displacement, and all the vectors Bp , j =1,...,Np the virtual master displacements. By calling the infini-
tesimal coordinate changes 3Y the vzrlual released displacement, it becomes obvious that (13) gives the slave
virtual displacement (of node N, in this example) as a function of this released displacement and master
virtual displacements (of all the nodes on element B). Such a relationship is fundamental in the master—slave
approach (Jeleni¢ and Crisfield, 1996; Jeleni¢ and Crisfield, 2001), but we emphasise that in contrast to the
results in these references, the present relationship is not confined to a single node. Instead, it involves a set of
master nodes, which reflects the fact that the sliding condition takes into account deformability of the
surface. The same basic approach was used in (Marjamaki and Makinen, 2003) in the context of an elastic
bar sliding along a deformable planar beam.

It is useful to collect all the virtual displacements of element A into a vector of virtual slave displacements
dp?. Likewise, stacking the virtual released displacement 3Y on top of the vector of virtual master dis-
placements (of both elements) gives the vector of virtual released and master displacements 8pj,,. Note that
in the present terminology, for all the nodes of element A4 apart from the last one, the master and the slave
virtual displacements are identical. These vectors are given explicitly as

dY
opf
o :
Sp'=1¢ and dpp, = < Opy

B
3py, 5?1

3py,
The two vectors can now be related by means of Eq. (13) as

dp" = Nop;,., (14)
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with
0o I ... 00 0 ... O
o, 0 10 0 0 (13)
Fz, 0 ... 0 0 LT ... Il
Eq. (14) provides the essence of the master—slave relationship.
2.4. Finite element assembly. definition of the coupling element
Let us recast the discretised weak form in (12) as
G"(x,8p) = dp* - g' +5p® - g =0, (16)
where 3p’ = {3p]...3p } and g’ = {g"'...g"""} are the elemental virtual displacement vector and the

elemental residual vector of element 7/, I = 4, B.
It is at this stage that the derived relationship (14) should be utilised. Substituting it into (16) gives

G"(x,dp) = dpp, - N'g' +8p° - g =0, (17)

and we see that the virtual work performed by element 4 can be expressed as the dot product of a new set of
master and released degrees of freedom, dp} , and an extended residual work-conjugate to them, which is
given by

F; gA.NA
1
g
gl;m :NTgA = A}\.Ifl ’ (18)
g HVA4
0
LTgAANA
with
L=[51 .. 5.

Let us define a coupling element as the element whose elemental displacement vector is dp,,. Such a cou-
pling element has the following degrees of freedom: displacements of the nodes in element 4, the released
displacements of node N, and the degrees of freedom of all the nodes in element B. The extended residual
gi of the coupling element is assembled into the global residual in accordance with the pattern given by
3py., . We emphasise that g4 depends on the residual g* of element A and the terms Fp, and L which depend
on element B. Eq. (17) can now be solved using the Newton—Raphson iterative procedure in a standard
manner.

It is now obvious that if the sliding is not limited to the surface of a single element, we only need to
evaluate F and L at the contact point of a newly contacted element in order to formulate the new coupling
element.

The concepts presented here will now be applied to the mechanics of 3D beams, where additional
complexities exist due to the presence of large 3D rotations. The issue of the dynamically changing coupling
element will also be dealt with in more detail in the context of sliding between 3D beams.
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3. Sliding joints in 3D beams

In this section we apply the concepts from Section 2 to the geometrically exact Reissner—Simo beams
(Reissner, 1972; Simo, 1985). We will first describe the kinematics of two beams in contact, and then derive
the equilibrium equations under the contact condition. The discretised weak form will now include a set of
virtual displacements and virtual rotations. Due to the specific kinematics of the beams, a new contact
condition relating the torques at the contact point will have to be defined.

3.1. Beam kinematics

Let us parametrise the position of any material point P of a beam (a body with one dimension much
larger than the other two) by three parameters {X! X2 X}, where X! = X is the arc-length coordinate
along the centroid axis of the beam, and X2 and X* are the coordinates of the point on the cross-section
o/ (X) at X'. We will represent the current position at time ¢ of the point P(X!, X2, X?) in the ambient space
by a mapping ¢,(X?) = x(X', 1), where ¢, is defined as

¢, :[0,L] x o/(s) x R, — R*.

Let us introduce an inertial frame e; and a moving frame g,(X,¢), i = 1,2, 3, rigidly attached to the cross-
section of the beam. We also assume that the undeformed configuration corresponds to a straight beam,
and define the (undeformed) reference configuration as the mapping y : [0,L] x .«7(X) — R* such that the
point P is represented by X(X') = y(P) = X'e; (see Fig. 6).

By assuming the undeformability of the cross-section (beam hypothesis) and according to the Reissner—
Simo beam theory, the kinematics of the beam at time ¢ will be completely defined by the position of the
points of the centroid axis r(X,¢), and the orientations of the cross-section. The latter is represented by a
proper orthogonal transformation A(X,7) € SO(3) (detA = +1 and A~' = A") such that

g.(X, 1) = AX,t)e;.

The vector r and the rotation matrix A allow to express the position of any point P(X?) of the beam in the
(deformed) current configuration as

x =r(X, 1) + AX, ) Z(X2, X?),

Current

| Conﬁg
| (.1

z< &

Initial

Reference Configuration

Configuration

Fig. 6. Beam kinematics.
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where Z = X?e, + X’e; is a vector within the cross-section in the reference configuration. We note that
unless stated explicitly, we will denote with capital letters variables referred to the reference configura-
tion (or material quantities), whereas we will use lower-case letters to denote variables in the current
configuration (or spatial quantities). We also note that any rotation matrix A may be expressed
as A =exp(0) where ||0] is the rotated angle, 6/||@| is the direction around which the rotation takes
place (Argyris, 1982), and (@) denotes a skew symmetric matrix such that Vw =v x w, V w,v € R*.

The beam kinematics is defined in R* x SO(3) and thus the virtual degrees of freedom Sp consist of the
virtual displacements and rotations which are now the kinematically admissible variations of the configu-
ration space:

o={ 00 ) (19)

where u(X,¢) =r(X,t) — r(X,0), and therefore du = or. The vector 3 represents a virtual rotation vari-
ation which stems from the variation of matrix A (Simo, 1985),

exp(eg@)A = SDA.

e=0

d
OA = —
de

In order to model the sliding contact between beams, let us consider two beams denoted as #* and %#°
which at time ¢ are in contact at the points of the centroid axis A; and B, respectively as shown in Fig. 7. In
contrast to the approach followed in Section 2, the contact condition will now relate the displacements and
the rotations of #* and %%, i.e.

r(Xy,) = 1:(Xs,), (20)

AI(XAI) = AI(XBI)Arely (21)

where the matrix A, in (21) relates the orientation of the two beams at the initial configuration:
A = AO(XBI)TAO(XAI). Fig. 7 illustrates this situation.

In a similar manner to that given in the previous section, we introduce the following equivalent set of
hypotheses consistent with the considered beam model:

hl At time ¢, beam %" exerts a force Sz, on point B' of beam %”. This force is taken to be equal in mag-
nitude and opposite in direction to force S, exerted by beam %#” on point 4; of beam %

SB| == _SAI .
: Current < N
BB Configuration /B By \‘\
\ - T ;“ QB SBl\'\
i L \ Sa j

) Initial
Configuration

=~ B
~ B

Fig. 7. Kinematics of beams %' and #? in contact.
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The beam kinematics, and in particular Eq. (21), make it reasonable to supplement this assumption with
the following additional kinetic hypothesis related to the transmission of contact torques.

h2 At time ¢, beam %* exerts a torque Q;, on point B' of beam #%. This torque is taken to be equal in
magnitude and opposite in direction to torque Q,, exerted by beam #® on point 4, of beam %"

QB1 = _QA]~

h3 Frictionless bilateral contact is assumed, i.e. the interaction forces between the bodies along the tangent
to the centroid lines of beams %' and %#* will be considered equal to zero:

Sy -ty =0 and Sp -1y =0,

1

where here and in the rest of the paper, we denote by (e)’ the derivative of (e) with respect to the
parameter X.

3.2. Beam equilibrium equations

We will consider the governing equations for each one of the beams % and %* separately and deduce
the corresponding weak form of the complete system by introducing the infinitesimal form of the sliding
condition in a manner analogous to that of Section 2.

Denoting by 4 and p the area of the cross-section and the density of the material, the local equilibrium
equations can be written as (Simo, 1985)

ANE (AN)' +s,
{ 7 } - { (AM)’ +?’A§ +5, } (22)

where I = Apu and = = AJW are the specific translational and angular momenta, and W and J are the
(material) angular velocity and the tensor of the mass moments of inertia of a cross-section. The vectors
N = Cyy and M = Cyk are the (material) stress resultants at the cross-section, Cy and C,, are the modulus
matrices, y = A'Y — G, and ¥ = ATA’ are the translational and rotational strain measures, and s, and s,
are the distributed load and torque per unit of undeformed length applied on X € [0,L], I = A4, B.

The governing equations must be complemented with the boundary conditions corresponding to the end
loads (for simplicity, no prescribed displacements will be considered),

AN S! AN S/
{AM }X'_O - —{Q%}; {AM }XI_LI - {QLZ} [=4.5 (23)

where S}, Q;, S, and Q] are the concentrated loads and torques at the two ends of each beam #'. Also,
there exist the concentrated force and torque due to the bilateral contact

S11 1 X,l+e Sn o
{ Q[l } = lim._, Xpy —e {Sm }dX I=4B8 29

The weak form of the equilibrium equations is obtained by multiplying (22) with the virtual displacements
(or test functions) Sp and integrating over the length L’ of each beam I = 4, B,

_ I — (AN / { S, }
G(r,A,du,d9) = /6 R , pdX — op - dx
( ) Z Il P { . — 1 AN — (AM) } I;B [ LI\XI1 P S

1=4,B
X/1 +e€ s
+ lim 5p-{ "} dx
e—0 X, —e S X,

=0.
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In order to simplify this expression, we note first that the last term corresponds to the virtual work done by
the external load {S, Q,}:

1im/Xll+56p. Sl ay—ep IS0\ s -4
=0 Xp —€ Sm X ! Q11 o

By using this result, integrating by parts the terms with (AN)" and (AM)" and substituting the boundary
conditions (23) and (24), the weak form can be expressed as:

G, A8p) = Y (Gi+Gi—Gl) = dp, - {3’; } =0, (25)

1=A4,B 1=A,B

where dp,, are the virtual displacements and rotations evaluated at points /;, and G}, G} and G/ are the
internal, dynamic and external contributions to the weak form, which are given by

AN 0
Gf(:/?)p“ dX—/Sp' R dx,
o AM i r'AN
, I
G, = / 5p-{  Sdx, (26)
o s
Sy S/ S,
Gi:/Sp- dXx + dp; - + 8p}, - .
v S Q, Q

3.3. Infinitesimal kinematic contact conditions

Let the deformed configuration ¢, be perturbed by a kinematically admissible virtual displacement and
rotation edp. We will assume that contact point 4, remains in contact with beam %° permanently,
whereas the contact point of beam %* changes during the perturbation (see Fig. 8): in the deformed
configuration, the contact is established at point B;, while in the perturbed configuration it is established
at Bz.

Current Perturbed
Configuration Configuration

. (B4
wED b6

A (Xa,)=A(XB,)Ara cbua, ber (BY)
7 (Xa,) :m(Xul
’,: Aot (Xa,) =Ac i (XBy)Are

ro(Xpy) Tet(Xa1) =71 (X5,)

¢ (B”)

g2 Initial
g1 Configuration

Fig. 8. Initial, current and perturbed configuration of beams %* and %°.
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The contact conditions (20) and (21) in the perturbed configuration are given by

re( X)) = rei(Xs,),
A‘J (XAl ) = AEJ (XBQ )Arel~

which provide the following relationships between virtual quantities:

6“14] = % rf‘t(XA]) = % [rt(XBI + ESX) + ESU(XBI + GSX)] = l';(XBl)SX + 6[]3],
e=0 e=0
BﬁAlAr(XAl) = & Ae,t(XAl) = & [exp(e&?(XBl + ESXBI))A[(XB] + eSX)Arel]
=0 e=0

= (i(\Bl X + 6/1\931)1\t()(31)1\rel,

where 8X is the variation of the contact point on the reference configuration and ks, = A(Xjg, )kp, is the
(spatial) curvature of the beam evaluated at Xj,. Using this result along with the contact condition (21)
gives the important relationships

duy, =1y OX + dug,,

(28)
6’[9,4[ == kB] 6X + 8’[93],

where r, = r}(Xp,). Substituting (28) into (25), and making use of hypotheses h1-h3, provides the following
result:

G(r,A,8p) = > (G, + Gl — G) — kg, - Q,,0X =0, (29)
I=4.B
in which the interaction torque between the two beams, Q,,, will be related to the vector of nodal residuals
upon the introduction of the spatial discretisation in Section 3.4.

We will extend Eq. (28), to contact conditions with a variable relative rotation between the two beams.
This will allow us to model joints with released rotations like a cylindrical joint sliding along a flexible
beam. The rotational contact condition set in (21) assumes that the relative rotation of beams % and % is
maintained constant throughout the motion. In case when this relative rotation is not constant, a new
rotation matrix Ay is introduced which then redefines the rotation at point 4, of beam %* to be

AXy,) = A(Xs,) ArAvar. (30)

The matrix A; measures the released rotation at X, with respect to the rotation A(Xjp,) (rotation at point B,
of beam #%”), without accounting of the initial relative rotation A,;. We note that we use the released
rotation matrix Az measured in the moving frame g, of beam %”. Eq. (30) is linearised in the standard way
to give

8"}41 == k316X + 8’(931 + Agl 8’l9R (31)

with 895 as the virtual released rotation and Ap, = A(Xjp, ). Instead of using the vector 619 we will rather
use the variation 860y of the rotation vector 0 in Ay = exp 0. This choice is necessitated by the nature of
some kinds of joints, the kinematics of which may not be defined using 69, (Jeleni¢ and Crisfield, 2001).
The relation between 69 and 60 can be deduced by considering the following equation

d = d =
—| exp(edd) = —| exp(0+ €30)
de| _, de| _,

€=l

which gives rise to (see e.g. Cardona and Géradin, 1988; Ritto-Corréa and Camotim, 2002; Simo and
Vu-Quoc, 1986)
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1—cos 0] 5 (1 _sin|0||> 0

3 =T7'(0)50; T '(0)=1+ .
o]* o1/ 1y

Substituting 693 into (31), we obtain
804, = kg, 0X + Ap, T, 80z + 595, (32)

where T,;l = T '(0z). By using relation (32) instead of (28), a new term arises in the weak form (29), which
is given by

G(r, A, dp) = (G, + G, — G) — kg, - Q,,8X + Ay, T5' 80z - Qg =0,

I1=A4,B

where the last term represents the virtual work done by the contact torque Qp, under a virtual released
rotation 8, = Ag 0Ux. If no friction is considered at the contact point under a relative rotation, no
reaction torque exist in the direction of the virtual released rotation and therefore this terms vanishes, i.e.
89, - Qp, = 0. We are in fact assuming an equivalent hypothesis to h3 for the case of rotations.

3.4. Finite element discretisation

Let us discretise the beams #* and %” using N, and N nodes respectively. The vector dp(X) will be
discretised by using the standard Lagrangian polynomials in (11) which now depend exclusively on the
parameter X, i.e.

3p"(X) = I'(X)3p;. (33)
By replacing the vector Sp in (29) with 8p”, the discretised weak form G” is readily obtained as
G'(r,A,8p") = " 8p' g — kX -Q, =0, (34)
1=4,B

where 8p’ = {dpj...dpy,} is the vector of elemental virtual displacements and rotations and
gl = {gl ... g/} is the elemental residual vector of element /. Each nodal component of g’ is the con-
tribution of the internal, dynamic and external nodal residual vectors qf;" , q;’j and q'/ respectively, i.e.
g = q,’ +q7 — ¢//. They are obtained from (26) as

y [ AN (0
qkA :/[j dX_/I/ o dX’
L AM i | PAN
| (i
qfi’=/1’{ ) }dX» (35)
o T
. (s | St | s
= [l Lax peid oLy g 2
W= {s} i I{Qé}+ N'{Qﬁ}

The master—slave relationship (28); and (32) may be rewritten as

T 0 A
Opy, = {ki }(SuR -Gi) + { Ag, T80, } + I}3p;, (36)

1

where dug = {8X 0 0} is the vector of released displacements, and as in the general case of elastodynamics,
we assume that the sliding point on element A corresponds to node N, throughout the motion. As in Section
2.3, we will define the slave and master and released vectors of virtual displacements and rotations as
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Opg
3p{
op{ :
Sp' = : and &pj, = 6p;i,?4 ,
o, W

3py,
where Op, is the vector composed of the virtual released displacement and rotation dug and 865. Using (36)
we can relate the two vectors as

5p" = N*0py,,» (37)
with
0 I 00 0 0
, oo, oo, : r, @G, 0
N=|: - - = = = - |y Ry=1|B o, 38
0 0 ... 100 ... 0 P ks @G AT G8)
R, 0 ... 0 0 LI 1

and where the matrices 0 and I are the 6x 6 zero and unit matrices.
In order to deal with the term with the contact torque in the weak form G", we insert the master—slave
relationship (37) into Eq. (34), which leads to

G"(r, A, 8p) = dpy, - N'Tg" + 5p” - g° — dup - (G ® kg, )Q,,. (39)

We now note that the discretised weak form G in (34) can be split in two weak forms G" and G} given by

S
Gi(r, A, dp) = dp" - g" — dpy, - {QAI } =0,
A
(40)

, S
Gy(r, A, dp) = 8p” - g° — [dp? - {QBI } =0
By

which correspond to the application of the virtual work principle to each beam separately. The weak form
in (39) is in fact the sum of the two parts: G* = G" 4+ G% = 0. Gathering the terms multiplying the virtual
rotations of node N, in Eq. (40); we obtain the following identity

gﬁxA - QA1 = 07

where g is the rotational part of the residual vector g+. Substituting this equation into (39) and making
use of (38) now gives

G"(r, A, dp) = dp} - N'g! 4+ 5p° - g =0, (41)
with
0 I 00 0 0
Do o : ¥, ® G, 0
N=| - - S : S|y Rg=1|2 1. 42
o0 Too ... o| 0 AT, ()
R; 0 0 0 /I I*1
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Now we can proceed as in Section 2 by defining the coupling element as an element with 6 x (1 + N, + N3)

degrees of freedom and a dynamic residual vector given by the product N'g?,

K

gt

g —Ng'— b (Wit L= A - o). (43)
0

LTgV

This extended residual g} is analogous to the residual in (18) in the case of elastodynamics and depends
obviously on vector g’ and on the kinematics of the contacted element by means of matrix Rp and the
values of the interpolating functions /3.

3.5. Numerical time integration

In order to process the dynamic residual of the coupling element (43) (and indeed the dynamic residuals
of all the other elements in the structure), special attention must be paid to the vector of inertial forces qf,‘j
within the dynamic residual. It is obvious from (35) that this vector contains the time derivatives of the
specific momenta / = Apu and # = AJW, i.e.

I=Api and 7= A(W x IJW +JA),

where A is the vector of (body) angular accelerations of a cross-section. The dynamic residual therefore
forms a set of ordinary second-order differential equations, which need to be integrated in time in order to
provide a numerical solution. There exist many different schemes for the numerical integration of velocities
and accelerations in a mechanical system and, in the recent years, much progress has been made in the
design of problem-dependent time-integration techniques which inherit some of the important properties of
motion from the underlying continuum case. In a companion paper (Munoz and Jelenié, in preparation),
we will attempt to make a contribution to this topic in relation to the problem of dynamics of flexible beams
with sliding joints, but here we limit our attention to a simple and widely used Newmark’s two-parameter
family of algorithms. In these algorithms, the velocities v,,; and accelerations a, | at time #,,; are defined
using the displacements u,, velocities v, and accelerations a, at time ¢,, the displacements u,,; at time ¢,
and the parameters f§ and y as (Newmark, 1959)

"

_ _ _7 _
Vo+r1 = ﬁAt(unJrl un) + <1 ﬁ)vn +At(l 2ﬁ>ana

1 1
a1 = W |:uy,+1 —-u, — AIV,, — Atz (5 — ﬁ) an:| .

The application of such an integration to angular velocities and accelerations only makes sense if performed
in a body-attached frame, i.e. in the material setting (Simo and Wong, 1991). In this way we obtain

W, = ©-+ ( —3>W,, +At<1 —l)A,,,

~ pAe B 2p
1 1
An+1 = W |:® - Atwn - Atz (5 - B)An:| )

where W,, A,, W, and A, | are the material angular velocities and accelerations at times ¢, and ¢,,; and ®
is the material rotational vector between configurations at times ¢, and ¢,,;. This material rotational
vector is related to the spatial incremental rotational vector through @ = Al@ = A}, 0. Performing the
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time-integration of velocities and accelerations as given here turns all of the contributions to the elemental
dynamic residual into the functions of the unknown configuration only. Naturally, the above time inte-
gration should be performed at the integration points of the inertial vector (35),.

In linear analysis, choosing =} and y = { provides unconditional stability and second-order accuracy
of the scheme. This scheme is known as the trapezoidal rule and it will be used in the numerical experiments
in the next section. It is important to remember, however, that the unconditional stability in the linear
regime does not extended to non-linear problems and that alternative techniques, which are designed to
preserve some of the properties of motion of the actual physical system, perform better than the trapezoidal
rule (Munoz and Jeleni¢, in preparation).

3.6. Newton—Raphson solution procedure and update

The virtual work Eq. (41) is tantamount to the non-linear vector equation
g=0, (44)

where g is the global dynamic residual of the structure. Upon introduction of a suitable interpolation for the
unknown displacement and rotation fields along each element, this equation may be solved using the
Newton—Raphson iterative procedure. Within this procedure, the system of linear equations

gl =g +KAp=0, (45)

where K = V,g is the global tangent operator and Ap is the global vector of the iterative corrections to the
nodal unknowns, needs to be solved, and the nodal unknowns updated repeatedly until a converged
solution is achieved. Note that the rotational field does not have to be interpolated in the same way as the
virtual rotation 69 in (33). Indeed, it is not advisable that it is, since such an interpolation would lead to a
loss of strain invariance in the formulation. See Jeleni¢ and Crisfield (1999) for details of a strain-invariant
interpolation for the rotational field. In the present approach, it must be borne in mind that the global
residual contains the residual of the coupling element, which will give rise to additional terms in the tangent
operator. Indeed, linearising the residual gz, leads to Agg, = V,. gz, = K., Apg,,, where K, is the local
tangent operator of the coupling element and may be expressed as

KRR 06 X6N4 KRm
T *
Ko = NTKUNG + O6v,x6 | Oon,xen, | Oon,xons |- (46)
Kir | Osngxon, | Osnyxon;

This result, including the matrices N;j, Kzr, Kz, and K, ¢, has been derived in Appendix A. Clearly, this
matrix has some coupling terms between the degrees of freedom of slave element 4 and those of the master
element B. These terms have to be processed carefully whenever the contact point switches from an element
to another element on the slideline. This is described in more detail in the following subsection.

In order to ensure that the sliding contact condition is preserved exactly, the iterative solution of the
equations must include a consistent update of the kinematics. Once the iterative changes AX = Ary - G| and
A0y are obtained from the solution of the system of equations (45) and the master and released variables
updated, the slave kinematics (ry,,Ay,) at the new iteration i + 1 is obtained according to the update
process summarised in Table 1. Note that the matrix A(X;"') depends on the actual interpolation of the
rotational degrees of freedom within the beam finite element used.

With all the nodal slave degrees of freedom in hand, it is now possible to update the kinematics at each
integration point for every element using the adopted interpolation for the displacement and the rotation
field. This in turn enables the update of the elemental contributions to the dynamic residual (35). In order to
update the vector of inertial forces, one needs to perform the velocity and acceleration update described in
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Table 1
Update of slave node kinematics (ry,, Ay, )
Xt =Xi +AX
Translations Rotations
W =G = P0G, AT exp(T- AG)AL

Update A(X;)
Ay = AXGA A

the previous subsection. To update the vector of internal forces, of course, it becomes necessary to update
the values of the translational and rotational strain measures.

3.7. Contact element transition

The present approach enables a straightforward transition of the contact point along a set of elements
forming a slideline. Let us assume that at time #; the contact point is established between elements 4 and B
(see Fig. 9), and that elements B and C are adjacent to each other in a string of elements on the slideline.

The contact element can be easily obtained from the value of X and the lengths of the elements on the
slideline in the reference configuration (see Fig. 9). If the transition of the contact point between elements
occurs during the iterative process, the generic definition of the coupling element allows us to consider a
different contact element by just replacing Rz and 7} in gs with the corresponding values for the new
element C, i.e. R¢ and 7. Of course, special care must be exercised during the assembly of the resulting
stiffness matrix since some terms couple the stiffness of the current contact element on the slideline (master
element) and the sliding element 4. When the contact point moves to another element, the topology of the
coupling element still remains the same provided the new element (and, by induction, all the elements on the
slideline) have the same topology. However, the vector L'g" in the residual and the coupling terms of K.,
will be posted into different positions in the global residual and the stiffness matrix.

Implementing this facility requires some modification to the standard data structure that should keep
track of the current contact element and provide the relevant terms of the residual vector and the stiffness
matrix for the coupling element. In addition, the kinematics of the current contact element must be

~ Na
Element A
Save and master node Element A
B Coupling element &1
1 Coupling element
XR(t2) -
XR(t” o o
— Siding line
R W
/ Wt B f Elemey
Save node Master nodes
ElementA

Master and dave node [ Reference Configuration

Fig. 9. Coupling element definition and scheme of the contact element transition.
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i pin
(X, %) :
Obtain contact element

v

. i
Retrieve rp, Ap, Iy, I3, I, kg, 75, and 7 from contact element|

Compute g4, K (equations (42), (A.3), (A.8) and (A.9) ) and

copy them into the global stiffness matrix and residual
Y

Solve and obtain Arg, AOg

‘L'pdatc master and released variables ‘

Y
4‘ Update slave node kinematics rlﬁl Al{rA1 (Table 1). ‘

Fig. 10. Contact element update including contact transition.

retrieved in order to update the variables at the slave node N, (see Table 1). A scheme of the different stages
required for the update and the construction of the coupling element during the iterative process is outlined
in Fig. 10. The transition of the contact point between adjacent elements for the case of 3D elastodynamics
can be performed accordingly.

4. Numerical results
4.1. Free falling mass (Sugiyama et al., 2003)

This example involves two flexible beams connected through a sliding joint with all the rotations released
(i.e. a spherical joint attached to a sliding joint). The initial configuration of the two beams is shown in Fig.
11. The co-ordinates of the beam nodes are also given in this figure, which indicate that the beams have
different lengths. All the other geometrical and material properties, however, are identical for both beams.
A mass of 1 kg is attached to beam BM at point M and submitted to the gravitational field.

This example was originally run by Sugiyama et al. (2003) using their absolute nodal formulation in
conjunction with a single finite element per beam. The trajectories of point M in the XZ and YZ planes are
read from Sugiyama et al. (2003) and shown in Fig. 12 using a dashed line. The authors did not give details
of the time-integration scheme used.

M 0.0 0.0 1.0
A=¢00 72;B=< 30 p; M=+ 30
ig 0.0 1.0 1.0

El, =EI, =1 x 1072
ply, = pl,, = 35 x 1078
AE =100.0 ; pA=008; v=0.3

Fig. 11. Free falling mass example.
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Present formulation Present formulation
Tr - Sugiyama et al. e ——— Sugiyama et al.
0.5 0.5
0r o0t
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N -0.5 N 05
-1 F -1+
1.5 15
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1 05 0 0.5 1 -1 <05 0 0.5 1 1.5 2 2.5 3 35
@ X (m) (b) Y (m)

Fig. 12. Mass trajectory in the XZ and YZ planes for the model given in Sugiyama et al. (2003).

Using the formulation presented in the earlier sections in conjunction with the strain-invariant geo-
metrically exact beam elements given in Jeleni¢ and Crisfield (1999), we have run this problem using one
quadratic element per beam. The Newmark implicit scheme with f = 0.25 and y = 0.5 (the trapezoidal rule)
has been used for the time integration of the equations of motion with a constant time-step of magnitude
At = 0.001. The analysis has been terminated once the sliding beam reaches end 4 of beam 4B, which
occurs at time ¢ = 1.5911. The projections of the trajectory of point M onto co-ordinate planes XZ and YZ
are plotted in Fig. 12 using a solid line. Comparing these results with those obtained in Sugiyama et al.
(2003) shows that while the qualitative behaviour of the structure is comparable in the two approaches, our
results provide considerably larger displacements. It should be noted that the absolute nodal formulation
(Sugiyama et al., 2003) uses a finite element which involves the derivatives of all the displacements at a node
as the additional nodal variables, which provides a more sophisticated approximation of the axial strain.
This in turn may be beneficial in systems like the present one, in which the axial straining makes a dominant
contribution to the strain energy. The elements we use are, in contrast, based around the isoparametric
Lagrangian interpolation of displacements and rotations as separate variables and are not expected to be
competitive in problems with such a large aspect ratio between the axial and the bending strain energy.
Nevertheless, this example has been chosen here in order to demonstrate the capabilites of the present
formulation to deal with large displacements and a sliding joint along a single element.

4.2. Flexible cylindrical manipulator ( Krishnamurthy, 1989)

In this example, a horizontal flexible beam with a tip mass at one of the ends is linked to a rigid hub
through a sliding joint with no released rotations. The hub can rotate and move along the vertical axis as
shown in Fig. 13, where the material and geometrical properties of the whole manipulator are also given.
The system is subject to three time-dependent loads: force F, which lowers the hub, moment A, which
rotates the hub, and follower force F,, which pulls the flexible beam through the hub. These loads vary in
time in such a manner as to move the manipulator from the position (r,z, 6) = (0.5588,0.5334,0) att =0 to
the position (r,z,8) = (0.254,0.2286,1.5708) at r = 1.5, where the degrees of freedom r, z and 6 are shown
in Fig. 13.

This problem was solved by Krishnamurthy (1989) by considering the vibration of a beam using the
engineering beam theory to be superimposed onto the three rigid-body modes. The resulting set of partial
differential equations was reduced to a system of ordinary non-linear differential equations by assuming the
local displacements fields for the beam to be linear combinations of the modes of vibration for a cantilever
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Fig. 13. Scheme and finite-element models of the flexible cylindrical manipulator.

beam. No details were provided for time integration of the resulting system of differential equations. The
results for the time histories of the two components of the local lateral displacement (with respect to the
straight line passing through the hub opening) for both ends of the beam have been scanned from
the original reference and given in Fig. 14.

@) 45 ' ' ' -
(b)
4-5F 25F 4
E il —
I-5F TN | g€ 05 ]
£ o |
~ il ‘ = sk
S st (AR L i < s T
— : 0 o
S ~ _35 -1
-4.5¢ N
_55 4
=75 . N N N
0 03 06 09 -2 I-5 =75

wy (0,7) (mm)

Fig. 14. Tip displacements of the manipulator given by Krishnamurthy (1989).
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In an attempt to reproduce these results using the present formulation, we have read the load histories
employed by the author (Fig. 4 in Krishnamurthy (1989)). Our readings of these time histories are given
in Fig. 15 (see Munoz (2004) for the actual values). In terms of spatial discretisation, we have modelled
the hub by means of a short vertical beam with equivalent mass properties and used two different finite-
element meshes to discretise the flexible beam. In the coarser mesh (mesh M 1), each cantilever end of the
beam has been modelled using a single quadratic finite element whereas in the finer mesh (mesh M2), the
whole beam has been modelled using 32 quadratic elements so that, in the initial configuration, one
cantilever end contains 22 and the other end contains ten elements. See Fig. 13 for meshes M1 and M2.
Invariant interpolation of total local rotations (Jeleni¢ and Crisfield, 1999) has been used in both cases.
Also, in both cases the contact between the beam and the hub is initially established at a nodal point. As
the beam is being pulled through the hub, the contact point drifts away from the initial nodal point, but it
always remains in contact with the beam in accordance with the presented theory. For mesh M1, there is
no transition of the contact point between the elements while, for mesh M2, 15 of the 32 elements at some
point in time make contact with the hub. It is important to understand that in both models the hub is
modelled as a short vertical beam, i.e. the hub is assumed to have no diameter and the sum of the lengths
of the two ends of the beam makes up the total length of the beam. In reality (and in the model used
in Krishnamurthy (1989)), however, the hub has certain diameter, so that the combined length of the
two ends of the beam is equal to the difference between the total length of the beam and the hub
diameter.

(b)

“o 0.3 0.6 0.9 1.2 15 0 0.3 0.6 0.9 1.2 1.5
Time [s] Time [s]

1} ©

) 0 0.3 0.6 0.9 1.2 1.5
Time [s]

Fig. 15. Time history of the input loads F;, F, and moment M., .
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Both analyses have been run using the Newmark trapezoidal rule with a time-step Az = 0.001. The time
step this small is required not as much for convergence reasons but rather to capture the progressively
increasing frequencies of vibration of the flexible arm with the point mass as that arm becomes shorter. The
resulting histories for the displacements r and z and the rotation 6 using the two finite-element meshes are
given in Fig. 16. These results are comparable to those given in Fig. 3 of Krishnamurthy (1989), but they do
not correspond exactly to the expected final configuration with (7, z, 0) = (0.254,0.2286,1.5708) at r = 1.5.
It should be noted again that the loading histories in Fig. 15 where read manually from a graph in
Krishnamurthy (1989).

The relative displacements vy, wy, v, and w, of the two ends of the flexible beam for meshes M1 and M2
are plotted in Figs. 17 and 18, respectively. These displacements are measured with respect to a straight line
that rotates rigidly with the hub and are comparable to the original results given in Fig. 14 (Krishnamurthy,
1989). The amplitudes of v; and w; increase whereas the amplitudes and the periods of vibration of v, and
wy decrease, which is what intuitively we would expect for the given loading history which tends to lengthen
the arm with the tip point 1 and shorten the arm with the point mass (tip point 2). While this observation is
valid for both meshes, it should be noted that the coarse mesh M1 exhibits only a modest increase in the
frequency of vibration of the tip mass in time (see Fig. 17).

This frequency increase is more pronounced with the finer mesh M2, and it is expected that further
refinement would lead to even closer agreement with the reference result (Fig. 14d). It should also be noted
that this mesh manages to capture the behaviour of the vertical vibration of tip point 1 qualitatively, as can

0.6 \ ;
Mesh M1 s— Mesh M1 se—
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Fig. 16. Time history of the displacements r, z and rotation 6.
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Fig. 17. Tip displacements of the flexible cylindrical manipulator using mesh M1.

be observed by comparing Figs. 18c and 14c¢. In contrast, the coarse mesh M1 fails to capture this behaviour
(Fig. 17c¢).

The differences in the displacements vy, w;, v, and w, between our results and the reference are in general
larger for the coarse mesh M1 than for the fine mesh M2. Clearly, the more approximate interpolation of
the contact point on the flexible arm has detrimental effects on the amplitude of vibration, especially in the
vertical displacement w;. In contrast, by modelling the flexible arm more accurately (which implies
including the facility to enable the transition of the contact point between the elements), we have been able
to improve the results. However, even with the finer mesh M2, these amplitudes are visibly larger than those
given in the reference. This difference should be attributed to the fact that in the present formulation the
contact is effected at a single point. This is in contrast to the model employed in the reference, which ac-
counts for the contact between the flexible arm and the hub along the whole diameter of the hub. As a
consequence, the two ends of the arm are longer in the present model thus producing larger tip displace-
ments.

5. Conclusions

A minimum-set master-slave methodology for the analysis of point contacts between elastic bodies has
been presented in this paper. This method does not involve Lagrangian multipliers or penalty parameters
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Fig. 18. Tip displacements of the flexible cylindrical manipulator using mesh M?2.

and may be considered as an alternative approach to addressing the contact problems in finite
elastodynamics. The method has been numerically implemented in detail in the context of elastic
mechanisms involving non-linear beam finite elements with joints, including the sliding joint, which is
representative of the problem of contact between the elastic bodies. For such systems, the contact is
retained throughout the motion, and the resulting contact force between the bodies can be of either
direction.

In terms of the finite-element implementation, it is important to design the process of transition of the
contact point between the adjacent elements on a slideline. It has been shown that this task can be per-
formed by devising the so-called coupling element, which includes the degrees of freedom both of the sliding
element and the (dynamically changing) contact element as well as the co-ordinate of the contact point and
any additional released degrees of freedom representative of the additional joints. When the contact point
jumps from one element on the slideline to another, the coupling element changes accordingly to account
for the occurrence of the new contact element. The process takes a particularly simple form when all the
contact elements on the slideline are of the same topology, in which case the coupling element always keeps
the same number of the degrees of freedom.

The performance of the method has been presented on two numerical examples from the literature,
which were originally solved using very different techniques from the present. Consequently, there have
been differences between the present results and those in the references, which are in our opinion justified by
the differences in the techniques used. For the free-falling mass example, a single-element mesh has been
used to enable a fair comparison with the results in the reference, which were also obtained using such a
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mesh. We note, however, that these results can hardly be taken as a converged solution for such a highly
elastic problem. For the flexible cylindrical manipulator, we have been able to provide a much better
agreement with the reference results. This example has emphasised the need for the dynamically changing
coupling element, in which case it has been possible to provide a much finer finite-element mesh, which has
provided improved agreement with the reference results.

Throughout the paper, the emphasis has been placed on the rigorous definition of the contact kine-
matics. We believe that the performance of the method can be improved further by providing a more
sophisticate time-integration technique than the presently adopted Newmark’s trapezoidal rule. In par-
ticular, in a forthcoming work, we aim to investigate the performance of the time integrators which are
specifically designed to preserve some of the constants of motion of the underlying system (Munoz and
Jeleni¢, in preparation). We also believe that the present master—slave approach is worthy of further
investigation in the context of general 3D contact elastodynamics.
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Appendix A. Linearisation of the coupling element residual gy,

We first note that the linearisation of the residual g = N'g” can be split in the following two terms:
A(NTg") = NTAg" + (ANT)g". (A.1)

The first one can be expressed by using the elemental stiffness matrix of the sliding element 4, denoted by
KA:

AgA = KAApA.

The vector Ap? can be related to the vector of iterative changes of released and master variables Ap,,, by
using Eq. (37):

Ap* = N*Ap;, .
However, if a strain-objective interpolation is desired, local rotations and generalised shape functions I{;,B
for the interpolation of the iterative rotations Az must be employed:

A9y = E A0, (A.2)
as demonstrated in Jeleni¢ and Crisfield (1999) where the explicit expression of the generalised shape

functions can be found. Replacing the functions 7 in matrix N* by the strain-invariant shape functions Ii,B,
we obtain the transformation matrix N; relating the vectors Ap* and Apg,:

Ap* = N;Apy,

with
0 I 0 0 0.0y,
. . . . 1 Np
N=| il T T (A3)
0 (_) ! (_) 066n, g8 g8
R, 0 00 L,
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Thus, making use of the elemental stiffness matrix K, and matrix N;, the term Ag” in (A.1) reads
AgA = KAApS = KAN;ApRm. (A4)

In order to obtain an explicit form for the second term in (A.1) with N given in (42) the following pre-
liminary results are deduced:

Ay = A(Ijr)) = IJAx; + I v;AXc = I Ar; + 1y @ G Arg,
. R - R (A.5)
AAB = A’ﬂAB + AXBkBAB = (A’ﬂ + (ArR . G])kB)AB,
where kz = Ak is the (spatial) curvature.
The linearisation of the transformation matrix T~" can be written as (see Ritto-Corréa and Camotim,
2002)
A(T(6) ")a = D(6,2)A0, (A.6)

where the matrix D(6,a) is given by

D(0,2) = c;a + (20 —202) — 302 @ 0 + ,0°a® 0

and
o = 1 —cosf . 1 1 sin 0 - Osin0 — 2(1 — cos 0) o = 3sin 0 — 0(2 4 cos 0)
1 — 92 2 — 62 0 3 = 94 4 = 05 .
Making use of (A.5) and (A.6), the computation of (ANT)g* becomes
G, ® Ar}, g G ® g (Ij'Ar, + 15 ® GiArg)
A(T,"AG gl D(0g, AfgV A0 — T ALkgY AXy + TR AL gV Ay
06, 06,
T _ 4 o 4
R A 1yg"AX;
A(Iy")g" I;"'g" Ay
KRR 06 X6N4 KRm
=| Oen,x6 | Oon,x6n, | O6n, xony | APrys (A7)
KmR OGNB X 6Ny OGNB X6Ng
where
Kow — [ l'g'gr]yAGl(X)Gl 0
T, "ALgY Ky @ G, D(0p, Alg¥h) |
(G ® gl 0 oo ... P10
Ko =10 rATgw )0 1 T A
R Bgm gB gB (AS)
A
K.z = " ® Gy.
i
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Eventually, the total stiffness matrix of the coupling element K., can thus be written as

. . Kzr 066, Krm
Ko = NKUN; + 06y, <6 | Oev,xen, | Oon,xony |- (A.9)
KmR 061\/3 XON4 OGNB X6Np
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